Testing Linear Correlation

\&

Making Prediction

Elementary Statistics

What is Testing Linear Correlation?

Testing Linear Correlation is to determine if there is a significant linear correlation between two variables in the given sample of ordered-pairs.

What is a Correlation?

A Correlation between two variables is when there is an apparent association between the values of one variable with the corresponding values from the other variable.

Linear vs Nonlinear Correlation

What is Linear Correlation?

Linear Correlation is defined when the ratio of proportion of two given variables are almost the same for all points.

What is Linear Correlation Coefficient?

Linear Correlation Coefficient is a numerical value that measures the strength of the linear correlation between the paired x and y for all values in the sample. We denote this value by r.

What are the properties of r ?

- $-1 \leq r \leq 1$
- It is designed to measure the strength of only linear relationship.
- It is very sensitive and changes value if the sample contains any outliers.
- The Linear Correlation Coefficient is considered significant when $|r|$ is fairly close to 1 .

How do we compute r ?

- Compute $\sum x, \sum y$, and $\sum x y$.
- Compute $\sum x^{2}$, and $\sum y^{2}$.
- Now we use the formula

$$
r=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{\sqrt{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}} \sqrt{n\left(\sum y^{2}\right)-\left(\sum y\right)^{2}}}
$$

where n is the number of ordered-pairs.
It is worth noting that r is usually calculated with a computer software or a calculator.

Example:

The study time and midterm exam score for a random sample of 10 students in a statistics course are shown in the following table.

Study Time; x (Hours)	3	4	4	5	6	6	8	9	10	9
Midterm Score; y	57	65	72	74	70	80	85	90	97	92

Find the value of linear correlation coefficient r by using the formula.

Solution:

We first identify that $n=10$, then find and verify that $\sum x=64, \sum y=782, \sum x y=5277, \sum x^{2}=464$, $\sum y^{2}=62632$,
and then we apply these values in the the formula

$$
\begin{aligned}
r & =\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{\sqrt{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}} \sqrt{n\left(\sum y^{2}\right)-\left(\sum y\right)^{2}}} \\
& =\frac{10(5277)-(64)(782)}{\sqrt{10(464)-(64)^{2}} \sqrt{10(62632)-(782)^{2}}} \\
& =\frac{2722}{\sqrt{544} \sqrt{14796}} \\
& \approx 0.959
\end{aligned}
$$

Testing Process for Linear Correlation:

(1) Set-Up H_{0} and H_{1}.

- $H_{0}: \rho=0 \Rightarrow$ Linear Correlation is not significant
- $H_{1}: \rho \neq 0 \Rightarrow$ Linear Correlation is significant
(2) Use TI commands or formula to find the P-Value for TTT.
(3) By P-Value method:
- If P - value $\leq \alpha$, then H_{1} is valid.
- If P - value $>\alpha$, then H_{0} is valid.
(4) Final Conclusion:
- Draw the final conclusion whether the linear correlation is significant or not.

Example:

The study time and midterm exam score for a random sample of 10 students in a statistics course are shown in the following table.

Study Time; x (Hours)	3	4	4	5	6	6	8	9	10	9
Midterm Score; y	57	65	72	74	70	80	85	90	97	92

Use TI command LinRegTTest to find
(1) CTS t
(2) P-Value p
(3) Linear Correlation Coefficient r

Solution:

We store all x values in L_{1} and corresponding y values in L_{2},

then we perform the following steps.
STAT \rightarrow TESTS \downarrow LinRegTTest Xlist: L_{1} Ylist: L_{2}

Solution Continued:

$$
\begin{aligned}
& \text { Linkisitictid } \\
& \text { Xlist: L1 } \\
& \text { Vlist:Lz } \\
& \text { Frea: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Reged: } \\
& \text { Calcul.ate }
\end{aligned}
$$

Now press Calculate key to view the results.

Solution Continued:

Linikistict
 - $=$ =
 B干可 Brod
 $t=9.625678707$
 F=1.1277058E-5
 $\mathrm{af}=8$
 $+\exists=46.17647059$

Here are the answers:
(1) CTS $t=9.626$
(2) P-Value $p=1.1 \times 10^{-5}$
(3) Linear Correlation Coefficient $r=.959$

Solution Continued:

We can also find the equation of the regression line $\hat{y}=a+b x$.

```
                    LinfisitT4**
-コ=ヨ+bx
```



```
t=9.625678707
F=1,127>058E-5
-af=8
+.G=46.17647059
```


Here are the answers:
(1) $a=46.176 \approx 46$
(2) $b=5.004 \approx 5$
(3) Equation of the regression line $\hat{y} \approx 46+5 x$

Elementary Statistics

How to Find CTS using Formula:

The formula to find the CTS is

$$
t=r \cdot \sqrt{\frac{n-2}{1-r^{2}}}
$$

Example:

Given $n=10$ and $r=0.959$, find the value of the CTS by using the formula and the corresponding P -value.

Solution:

$$
\begin{aligned}
t & =r \cdot \sqrt{\frac{n-2}{1-r^{2}}} \\
& =0.959 \cdot \sqrt{\frac{10-2}{1-0.959^{2}}} \\
& =0.959 \cdot \sqrt{\frac{10-2}{1-0.920}} \\
& =0.959 \cdot \sqrt{\frac{8}{0.08}} \\
& =0.959 \cdot \sqrt{100} \\
& =0.959 \cdot 10 \\
& =9.59
\end{aligned}
$$

Solution Continued:

Now, to find the corresponding P-Value, we use the TI command $\operatorname{tcdf}(\mathbf{L}, \mathbf{U}, \mathbf{d f})$ with $d f=n-2$. Make sure to multiply the area by 2 since it is a TTT.

$$
\text { P-value } p=2 \cdot \operatorname{tcdf}(9.59, E 99,8)=1.16 \times 10^{-5}
$$

Example:

The study time and midterm exam score for a random sample of 10 students in a statistics course are shown in the following table.

Study Time; x (Hours)	3	4	4	5	6	6	8	9	10	9
Midterm Score; y	57	65	72	74	70	80	85	90	97	92

Use the P-Value method at 0.05 significance level, to determine whether the linear correlation is significant or not.

Solution:

We first set up H_{0} and H_{1},

- $H_{0}: \rho=0 \Rightarrow$ Linear Correlation is not significant
- $H_{1}: \rho \neq 0 \Rightarrow$ Linear Correlation is significant

Since $1.1 \times 10^{-5} \leq 0.05 \Rightarrow P$ - value $\leq \alpha$, then H_{1} is valid which implies

Linear Correlation is significant.

The conclusion whether the linear correlation is significant or not is an important factor as we make predictions.

Elementary Statistics

How do we make prediction?

- When linear correlation is significant, use $\hat{y}=a+b x$.

Plug in the given x value to find the prediction value y.

- When linear correlation is not significant, use \bar{y}.

Example:

Eight pairs of data yield the regression equation $\hat{y}=55.6+2.8 x$ with $\bar{y}=71.5$.
What is the best predicted value for y for $x=5.5$ if we assume the linear correlation is significant?

Solution:

Since the linear correlation coefficient is significant, we use the equation of the regression line $\hat{y}=55.6+2.8 x$. and plug in $x=5.5$ to find the prediction value.

$$
\begin{aligned}
\hat{y} & =55.6+2.8 x \\
& =55.6+2.8(5.5) \\
& =55.6+15.4 \\
& =71
\end{aligned}
$$

So, our prediction value is 71 .

Example:

Ten pairs of data yield the regression equation
$\hat{y}=73.5-4.5 x$ with $\bar{y}=58.5$.
What is the best predicted value for y for $x=4.5$ if we assume the linear correlation is not significant?

Solution:

Since the linear correlation is not significant, we use \bar{y} as the prediction value regardless of the value of x.

So, our prediction value is 58.5 .

